

US009451975B2

(12) United States Patent Sepulveda et al.

epulveda et al.

(54) SKIN ABRADER

(71) Applicant: iRhythmTechnologies, Inc., San

Francisco, CA (US)

(72) Inventors: Genaro Sebastian Sepulveda, San

Francisco, CA (US); **Timothy Jon Bahney**, San Francisco, CA (US); **Shena Hae Park**, San Francisco, CA

(US)

(73) Assignee: iRhythm Technologies, Inc., San

Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/831,078

(22) Filed: Aug. 20, 2015

(65) Prior Publication Data

US 2015/0351799 A1 Dec. 10, 2015

Related U.S. Application Data

- (62) Division of application No. 14/247,014, filed on Apr. 7, 2014, now Pat. No. 9,173,670.
- (60) Provisional application No. 61/809,817, filed on Apr. 8, 2013.
- (51) **Int. Cl.**

 A61B 17/50
 (2006.01)

 A61B 17/32
 (2006.01)

(Continued)

(52) U.S. Cl.

(58) **Field of Classification Search** CPC A61B 17/32; A61B 19/026; A61B 5/04025;

(10) Patent No.: US 9,451,975 B2

(45) **Date of Patent:** Sep. 27, 2016

A61B 5/04087; A61B 17/54; A61B 2019/0267; A61B 2017/320004; A61B 2017/00761; A47K 7/02; A61E 13/00; A61A 13/00

USPC 600/372, 382, 386, 391, 392; 607/149, 607/152–153; 606/131–133; 132/75.6, 76.4 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

(Continued)

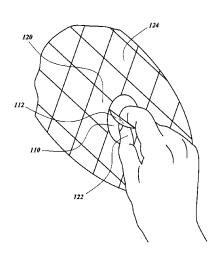
FOREIGN PATENT DOCUMENTS

CA 2752154 A1 8/2010 EP 01782729 A1 5/2007

(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 8,750,980, filed Jun. 10, 2014, Katra et al. (withdrawn).


(Continued)

Primary Examiner — Amy R Weisberg (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson & Bear LLP

(57) ABSTRACT

The present invention relates to devices, methods, and systems for abrading the skin in preparation for attachment of an electrode. In some embodiments, the invention may provide for a simple, low-cost device 120 with a flat, abrading surface that removes the topmost layer of the skin without causing undue injury.

22 Claims, 12 Drawing Sheets

US 9,451,975 B2

Page 2

(51)	Int. Cl.			5,511,553 A	4/1996	Segalowitz
	A61B 5/0402		(2006.01)	5,515,858 A		Myllymaki
	A61B 5/0408		(2006.01)	5,536,768 A		Kantner et al. Feldman et al.
	A61B 17/54			5,626,140 A 5,634,468 A		Platt et al.
	A01B 1//34		(2006.01)	5,645,063 A *		Straka, Jr A61B 5/04085
(56)		Dofowor	ces Cited	5,0 15,005 11	7,1007	600/391
(56)		Keieren	ices Cited	5,645,068 A	7/1997	Mezack et al.
	IIS F	PATENT	DOCUMENTS	5,730,143 A	3/1998	Schwarzberg
	0.5.1	THEAT	BOCCIMENTS	5,749,365 A	5/1998	
	2,201,645 A *	5/1940	Epner B24D 15/023	5,749,367 A 5,771,524 A *	6/1008	Gamlyn et al. Woods A45D 40/00
			15/231	3,771,324 A	0/1996	15/209.1
	2,311,060 A *	2/1943	Lurrain A45D 26/0004	5,881,743 A *	3/1999	Nadel A45D 34/06
	2.500.940. 4. *	2/1050	451/524			132/317
	2,500,840 A *	3/1930	Lyons A47L 13/29 15/111	5,957,854 A		Besson et al.
	3,215,136 A	11/1965	Holter et al.	5,959,529 A	9/1999	
			Chapman et al.	6,013,007 A 6,032,060 A *		Root et al. Carim A61N 1/0472
	3,870,034 A	3/1975	James	0,032,000 11	2/2000	128/898
	3,882,853 A *	5/1975	Gofman A61B 5/0416	6,044,515 A *	4/2000	Zygmont B05C 17/00
	3 011 006 A *	10/1075	600/391 Reinhold, Jr A61B 5/04025		= /	15/209.1
	3,911,900 A	10/19/3	600/392	6,093,146 A		Filangeri
	4,023,312 A *	5/1977	Stickney A47J 37/06	D429,336 S 6,102,856 A		Francis et al. Groff et al.
			451/357	6,117,077 A		Del Mar et al.
	4,027,664 A *	6/1977	Heavner, Jr A61B 5/411	6,134,480 A		Minogue
	4,121,573 A	10/1079	600/376	6,136,008 A *		Becker A61B 5/04025
			Crovella et al. Cherry et al.	5 4 54 0 0 5 1 1 t	10/0000	600/392
	4.126.126 A *	11/1978	Bare A61B 5/0408	6,161,036 A *	12/2000	Matsumura A61B 5/0006
	-,,		439/909	6,169,915 B1	1/2001	128/903 Krumbiegel et al.
	4,202,139 A *	5/1980	Hong B24D 15/045	6,178,357 B1		Gliner et al.
	4 27 4 410 4	C/1001	15/227	6,200,265 B1	3/2001	Walsh et al.
	4,274,419 A 4,274,420 A *		Tam et al. Hymes A61B 5/04087	6,225,901 B1	5/2001	
	7,277,720 A	0/1981	600/391	6,232,366 B1	5/2001	Wang et al. DeLuca et al.
	4,286,610 A *	9/1981	Jones A45D 29/12	6,238,338 B1 6,248,115 B1*		Halk A45D 26/0004
			132/76.4	0,240,113 D1	0/2001	132/76.4
	4,333,475 A	6/1982	Moreno et al. Link B24D 15/023	6,290,707 B1*	9/2001	Street A61B 17/54
	4,361,990 A	12/1982	451/524			606/131
	4,381,792 A *	5/1983	Busch, Jr A45D 29/12	6,379,237 B1*	4/2002	Gordon E04F 21/00
	, ,		132/75.6	6,385,473 B1	5/2002	451/523 Haines et al.
	4,438,767 A *	3/1984	Nelson A61B 19/00	6,416,471 B1		Kumar et al.
	4.450.007. 4. *	7/1004	30/169 P. 1	6,434,410 B1	8/2002	Cordero et al.
	4,459,987 A *	//1984	Pangburn B24D 15/04 132/76.4	6,454,708 B1		Ferguson et al.
	4,535,783 A	8/1985	Marangoni	6,456,872 B1		Faisandier Beaudry A45D 29/11
	4,537,207 A *		Gilhaus A61B 17/54	6,464,815 B1*	10/2002	15/208
			132/76.4	6.493.898 B1*	12/2002	Woods B05C 17/00
	4,572,187 A		Schetrumpf	, ,		15/209.1
	4,021,403 A	11/1980	Pangburn B24D 15/023 132/76.4	6,510,339 B2		Kovtun et al.
	4.658.826 A *	4/1987	Weaver A61B 5/0408	6,546,285 B1		Owen et al.
	, ,		252/519.21	6,569,095 B2 6,580,942 B1		Eggers Willshire
	4,712,552 A *	12/1987	Pangburn B24D 15/04	6,585,707 B2		Cabiri et al.
	4 726 752 A	4/1000	132/76.4	6,589,187 B1		Dirnberger et al.
	4,736,752 A 4,925,453 A *		Munck et al. Kannankeril A61F 13/36	6,605,046 B1		Del Mar
	1,525,155 11	5, 1550	128/917	6,622,035 B1*	9/2003	Merilainen A61B 5/04025 600/391
	4,981,141 A	1/1991	Segalowitz	6.626.865 B1*	9/2003	Prisell A61B 17/32053
	5,003,987 A *	4/1991	Grinwald A61B 5/0531	0,020,003 B1	5/2005	604/116
	5 027 924 A	7/1001	600/306	6,664,893 B1	12/2003	Eveland et al.
	5,027,824 A 5.086,778 A		Dougherty et al. Mueller et al.	6,665,385 B2		Rogers et al.
	5,205,295 A		Del Mar et al.	6,690,959 B2*	2/2004	Thompson A61B 5/0006
	5,228,450 A		Sellers	6,694,177 B2	2/2004	600/372 Eggers et al.
	5,230,119 A *	7/1993	Woods A45D 40/26	6,701,184 B2		Henkin
	5 200 024 4	2/1004	128/917	6,711,427 B1*		Ketelhohn A61B 5/04025
	5,289,824 A 5,305,746 A *		Mills et al. Fendrock A61B 5/0408			600/372
	5,505,740 A	コ/1 プグサ	600/391	6,730,028 B2*	5/2004	Eppstein A61B 10/0045
	5,309,909 A *	5/1994	Gadsby A61B 5/0408		0.00	102/201
			600/386	6,775,566 B2		Nissila
	5,365,935 A		Righter et al.	6,801,137 B2	10/2004	
	5,458,141 A *	10/1995	Neil A61B 5/0408	6,801,802 B2 6,881,191 B2		Sitzman et al. Oakley et al.
	5,483,967 A	1/1996	600/386 Ohtake	6,893,396 B2		Schulze et al.
	5,489,624 A		Kantner et al.	6,940,403 B2	9/2005	
				, , , -		

US 9,451,975 B2 Page 3

(56)		Referen	nces Cited	8,538,503	B2	9/2013	Kumar et al.
(50)	II S		DOCUMENTS	8,540,731			Kay A61B 17/54 606/131
	0.5.	LAILINI	BOCOMENTS	8,560,046	B2	10/2013	Kumar et al.
6,954,10	53 B2	10/2005	Toumazou et al.	8,591,430		11/2013	Amurthur et al.
6,957,10			Rogers et al.	8,594,763	B1 *	11/2013	Bibian A61B 5/0478
7,002,40			Eveland et al.				600/372
7,020,50		3/2006	Stivoric et al.	8,684,925			Amurthur et al.
7,024,24	48 B2	4/2006	Penner et al.	8,688,190			Libbus et al.
7,072,70			Andresen et al.	8,718,752			Libbus et al.
7,072,70		7/2006		8,782,308 8,790,257		7/2014	Libbus et al.
7,076,23			Cho et al.	8,795,174			Manicka et al.
7,076,23 7,076,23			Rowlandson Skinner	8,818,481			Bly et al.
7,076,2			Sarkar et al.	8,823,490			Libbus et al.
7,079,9			Osorio et al.	8,909,832		12/2014	Vlach et al.
7,082,33			Houben	8,945,019			Prystowsky et al.
7,099,7		8/2006	Korzinov et al.	9,017,256			Gottesman
7,130,39			Rogers et al.	9,021,161			Vlach et al.
7,179,1	52 B1*	2/2007	Rhoades A61K 8/19	9,021,165		4/2015	
7.102.2	(4 D2	2/2007	424/401	9,173,670 9,179,851		11/2015	Sepulveda et al. Baumann et al.
7,193,20		3/2007		9,241,649			Kumar et al.
7,194,30 7,206,63		4/2007	Korzinov Tarler	2001/0056262			Cabiri et al.
7,212,8			Prystowsky et al.	2002/0067256		6/2002	Kail
7,242,3		7/2007		2002/0082491			Nissila
7,266,30			Burdett	2002/0087167	A1*	7/2002	Winitsky A61B 17/32
7,316,6	71 B2*	1/2008	Lastovich A61B 17/205	2002/0060510		4/2002	606/131
			604/290	2003/0069510 2003/0083559			Semler et al. Thompson
7,354,42	23 B2 *	4/2008	Zelickson A45D 26/0004	2003/0083339		8/2003	
7,387,60	17 D2	6/2008	604/289	2003/0176795			Harris et al.
7,387,00 7,481,7		1/2009	Holt et al.	2003/0195408			Hastings A61B 5/411
7,482,3			Grimes A61B 17/50				600/382
.,,.			424/401	2003/0199811	A1*	10/2003	Sage, Jr A61B 17/205
7,502,64			Farringdon et al.	2004/0032957	A 1	2/2004	604/46 Mansy et al.
7,587,23			Korzinov et al.	2004/0032937			Oakley et al.
7,630,73	56 В2 74 В2*	12/2009	Gringer B24D 15/04	2004/0215091			Lohman et al.
7,032,1	/4 DZ	12/2009	451/344	2004/0236202		11/2004	
7,729,7	53 B2	6/2010	Kremliovsky et al.	2004/0254587	A1*	12/2004	Park A61B 17/54
D621,04			Severe et al.				606/131
7,815,49	94 B2	10/2010	Gringer et al.	2004/0260189			Eggers et al.
7,841,03	39 B1*	11/2010	Squire A47L 13/12	2005/0096513			Ozguz et al.
7 000 0	70 D2	2/2011	15/118	2005/0101875 2005/0118246		6/2005	Semler et al. Wong et al.
7,889,0			Reeves et al.	2005/0119240			Eveland
D634,43 7,907,93		3/2011	Severe et al.	2005/0165323			Montgomery et al.
7,907,99	96 B2		Prystowsky et al.	2005/0277841		12/2005	Shennib
7,941,20			Korzinov	2005/0280531	A1		Fadem et al.
7,996,0			Korzinov et al.	2006/0030781			Shennib
8,002,70			Michael et al.	2006/0030782			Shennib
8,077,04		12/2011		2006/0047215		3/2006 4/2006	Newman et al.
8,116,84			Bly et al.	2006/0084883 2006/0142648			Banet et al.
8,150,50 8,156,9			Kumar et al. Hart A61B 17/54	2006/0142654		6/2006	
8,130,9	+3 D Z	4/2012	132/76.4	2006/0149156			Cochran et al.
8,160,63	82 B2	4/2012	Kumar et al.	2006/0155173	A1	7/2006	Anttila et al.
D659,83			Bensch et al.	2006/0155183			Kroecker et al.
8,200,3	19 B2	6/2012	Pu et al.	2006/0155199			Logier et al.
8,214,00			Baker et al.	2006/0155200			Ng et al.
8,244,33			Kumar et al.	2006/0161064 2006/0161065		7/2006	Watrous et al.
8,249,63			Libbus et al. Pitstick A45D 29/04	2006/0161065		7/2006	
8,201,7	54 B2*	9/2012	132/323	2006/0161067		7/2006	
RE43,70	57 E	10/2012	Eggers et al.	2006/0161068			Hastings et al.
8,285,3			Bly et al.	2006/0224072			Shennib
8,290,12	29 B2		Rogers et al.	2006/0264767			Shennib
8,326,40		12/2012		2007/0003695			Tregub et al.
8,343,1	16 B2*	1/2013	Ignon A61M 35/003	2007/0010729	Al *	1/2007	Virtanen A61B 5/04025 600/391
8,374,69	88 B2	2/2013	604/289 Libbus et al.	2007/0088419	A1	4/2007	Florina et al.
8,406,84			Tiegs et al.	2007/0156054			Korzinov et al.
8,412,3			Mazar	2007/0225611			Kumar et al.
8,425,4			Eveland	2007/0249946			Kumar et al.
8,452,3			Vestel et al.	2007/0255153			Kumar et al.
8,460,13			Libbus et al.	2007/0270678			Fadem et al.
8,473,04			Chakravarthy et al.	2007/0293776			Korzinov et al.
8,515,52	29 B2	8/2013	Pu et al.	2008/0039730	Al	2/2008	Pu et al.

(56)	Referen	nces Cited		/0300575 A1		Kurzweil et al.
U	J.S. PATENT	DOCUMENTS	2013	/0324868 A1 /0331665 A1	12/2013	Kaib et al. Bly et al.
				/0338448 A1		Libbus et al.
2008/0091089 A		Guillory et al.		/0012154 A1 /0058280 A1	1/2014	Mazar Chefles et al.
2008/0108890 A 2008/0114232 A		Teng et al.		/0038280 A1 /0094709 A1		Korzinov et al.
2008/0114232 A		Baker et al.		/0206977 A1		Bahney et al.
2008/0275327 A		Faarbaek et al.		/0057512 A1		Kapoor
2008/0288026 A		Cross et al.		/0081959 A1		Vlach et al.
2009/0073991 A		Landrum et al.		/0082623 A1 /0087921 A1		Felix et al. Felix et al.
2009/0076336 A 2009/0076340 A		Mazar et al. Libbus et al.		/0087921 A1 /0087922 A1		Bardy et al.
2009/0076341 A		James et al.	2015	/0087923 A1	3/2015	Bardy et al.
2009/0076342 A		Amurthur et al.		/0087948 A1		Bishay et al.
2009/0076343 A		James et al.		/0087949 A1 /0087950 A1		Felix et al. Felix et al.
2009/0076344 A		Libbus et al. Manicka et al.		/0087930 A1 /0087951 A1		Felix et al.
2009/0076345 A 2009/0076346 A		James et al.		/0088007 A1		Bardy et al.
2009/0076349 A		Libbus et al.		/0088020 A1		Dreisbach et al.
2009/0076350 A		Bly et al.		/0173671 A1		Paalasmaa et al.
2009/0076397 A		Libbus et al.		/0297134 A1		Albert et al. Hernandez-Silverira et al.
2009/0076401 A 2009/0076559 A		Mazar et al. Libbus et al.	2013	/0327781 A1	11/2013	Hemandez-Shverna et al.
2009/00/0339 A		Semler et al.		FOREIC	N PATE	NT DOCUMENTS
2009/0253975 A		Tiegs A61B 5/0416		TORLIC	JI	IVI DOCCIVILIVIS
2000/0202121	4.1 4.1/2000	600/372	EP		2419 A2	12/2010
2009/0292194 A 2010/0022864 A	A1 11/2009 A1* 1/2010	Libbus et al. Cordero A61B 5/0478	EP		5911 A2	12/2011
2010/0022804 A	41 1/2010	600/372	EP EP		5179 A1	9/2013
2010/0042113 A	A1* 2/2010	Mah C11D 11/0011	GB		5180 A1 8707 A	9/2013 10/2000
		606/131	JP		7913 A	3/1996
2010/0051039 A	A1* 3/2010	Ferrara A45D 26/0004	JP	2000-12		5/2000
2010/0056881 A	3/2010	128/898 Libbus et al.	JР	2001-05		3/2001
2010/0057056 A		Gurtner A61B 17/320016	JP JP	2004-12 2007-04		4/2004 2/2007
		604/542	JP	2007-29		11/2007
2010/0081913 A		Cross et al.	JP	2009-52		7/2009
2010/0145359 A	41 0/2010	Keller A61B 17/54 606/131	WO	WO 99/2		5/1999
2010/0191310 A	A 1 7/2010		WO WO	WO 01/1 WO 2005/03		3/2001 4/2005
2010/0234716 A			WO	WO 2005/08		9/2005
2010/0249625 A			WO	WO 2006/09		9/2006
2010/0268103 A 2010/0331711 A		McNamara et al. Krauss et al.	WO	WO 2007/04		3/2007
2011/0021937 A		Hugh et al.	WO WO	WO 2007/03 WO 2007/06		4/2007 6/2007
2011/0087083 A		Poeze et al.	WO	WO 2007/00 WO 2007/07		6/2007
2011/0144470 A		Mazar et al.	WO	WO 2008/05		5/2008
2011/0160601 A 2011/0166468 A		Wang et al. Prystowsky et al.	WO	WO 2010/09		10/2010
2011/0100408 A		Hayes-Gill A61B 5/04085	WO WO	WO 2011/07 WO 2011/14		6/2011
		600/382	WO	WO 2011/14 WO 2012/00		12/2011 1/2012
2012/0071730 A		Romero	WO	WO 2012/06		5/2012
2012/0071731 A		Gottesman Rotondo et al.	WO	WO 2012/06		5/2012
2012/0083670 A 2012/0108917 A		Libbus et al.	WO	WO 2014/11	6825	7/2014
2012/0108920 A		Bly et al.				
2012/0110226 A		Vlach et al.		OT	HER PU	BLICATIONS
2012/0110228 A 2012/0172676 A		Vlach et al. Penders et al.	2M C	rnoration "2M	Curaical	Tapes—Choose the Correct Tape"
2012/01/2070 A		Cao et al.		heet (2004).	Suigical	Tapes—choose the Correct Tape
2012/0271141 A		Davies A61B 5/053	-	, ,	omr of alim	ical halter manitaring: A. N. E., val
2012/0210050		600/382		ar et ar.; The his o. 2; pp. 226-23	-	ical holter monitoring; A.N.E.; vol.
2012/0310070 A 2012/0323257 A		Kumar et al. Sutton A61B 17/54				uous external electrocardiographic
2012/0323237 E	12/2012	606/131				vol. 8; pp. 255-266; 2006.
2013/0046151 A	A 1 2/2013	Bsoul et al.		-	-	on of event recording for diagnosis
2013/0085347 A		Manicka et al.				palpitations and light-headedness in
2013/0096395 A		Katra et al.				actice; Dec. 7, 2006.
2013/0116533 A 2013/0116585 A		Lian et al. Bouguerra	-	-	-	alled on Sep. 23, 2014 for Interna-
2013/0110383 A		Linker		Application No		*
2013/0225938 A	A1 8/2013	Vlach				science, and innovation of holter
2013/0226018 A		Kumar et al.		•		. 1; pp. 85-84; 2006.
2013/0245415 A		Kumar et al. Eveland				Wearable Physiologic Monitoring
2013/0245472 A 2013/0253285 A		Bly et al.			-	l Applications" IEEE Transactions
2013/0274584 A		Finlay et al.				Biomedicine, vol. 9, No. 3, pp.
2013/0296680 A			382-38	34, Sep. 2005.		

(56) References Cited

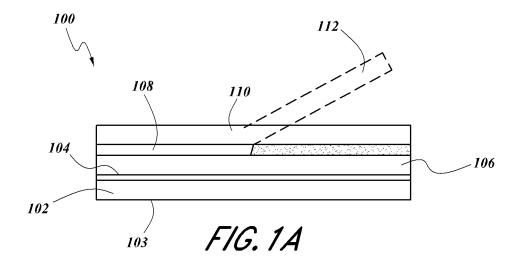
OTHER PUBLICATIONS

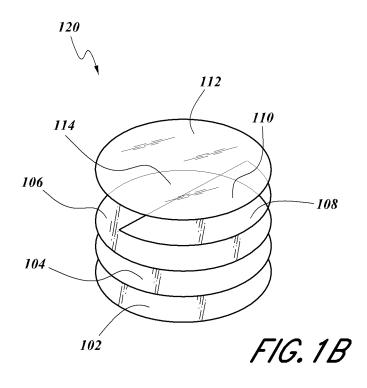
Reiffel et al., Comparison of autotriggered memory loop recorders versus standard loop recorders versus 24-hour holer monitors for arrhythmia detection; Am. J. Cardiology; vol. 95; pp. 1055-1059; May 1, 2005.

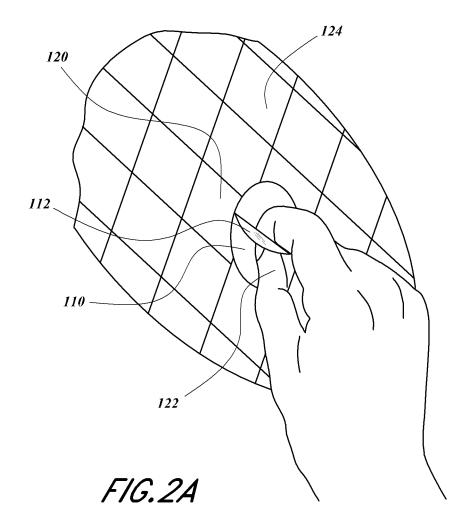
Request for Reexamination of U.S. Pat. No. 7,020,508 under 35 U.S.C. §§ 311-318 and 37 C.F.R. § 1.913 as submitted Sep. 14, 2012 in 78 pages.

Scapa Medical product listing and descriptions (2008) available at http://www.caapana.com/productlist.jsp and http://www.metplus.co.rs/pdf/prospekti/Samolepljivemedicinsketrake.pdf; retrieved via WayBack Machine Sep. 24, 2012.

Ward et al., Assessment of the diagnostic value of 24-hou ambulatory electrocardiographic monitoring; Biotelemetry Patient monitoring; vol. 7; 1980.


Ziegler et al; Comparison of continuous versus intermittent monitoring of atrial arrhythmias; Heart Rhythm; vol. 3; No. 12; pp. 1445-1452; Dec. 2006.


Zimetbaum et al., The evolving role of ambulatory arrhythmia monitoring in general clinic practice; Ann. Intern. Med.; vol. 130; pp. 848-8556; 1999.


Zimetbaum et al.; Utility of patient-activated cardiac event recorders in general clinical practice; The Amer. J. of Cardiology; vol. 79; Feb. 1, 1997.

U.S. Appl. No. 15/005,854, filed Jan. 25, 2016, Kumar et al.

* cited by examiner

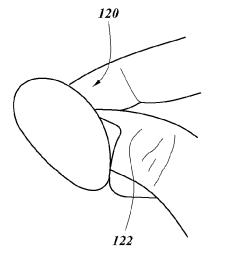


FIG.2B

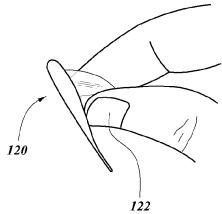


FIG.2C

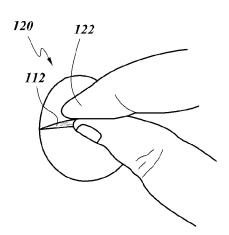
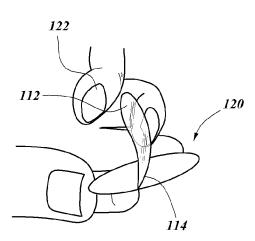
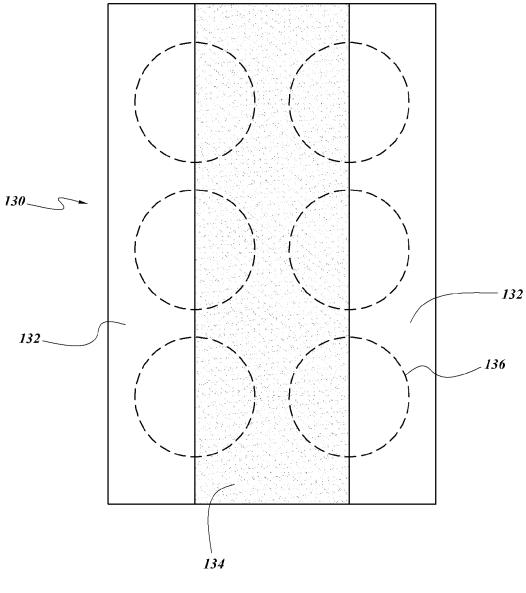
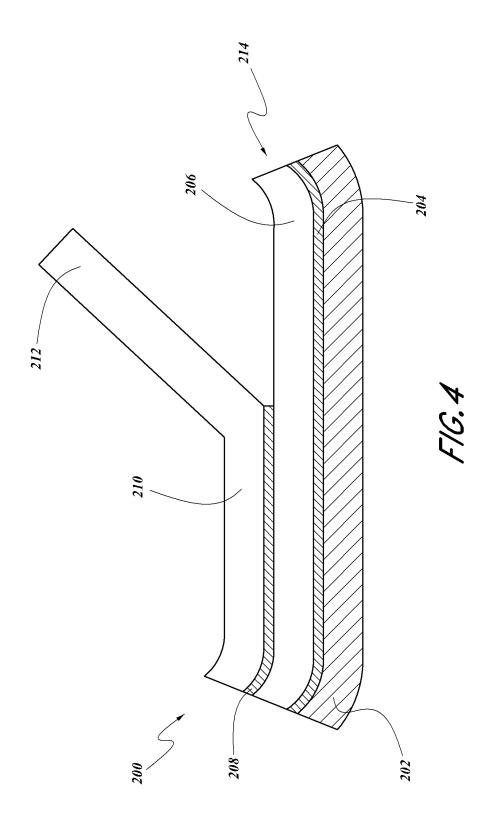
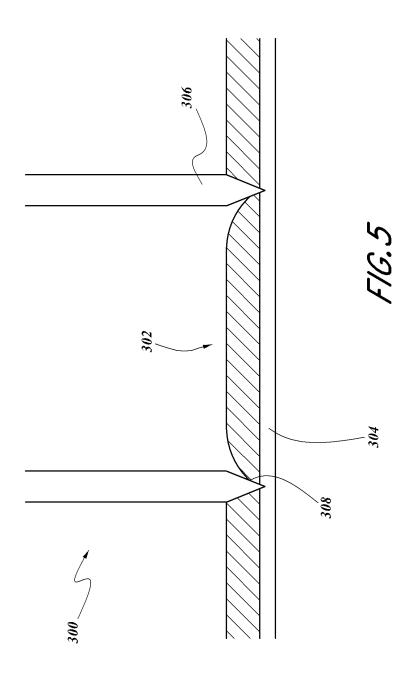
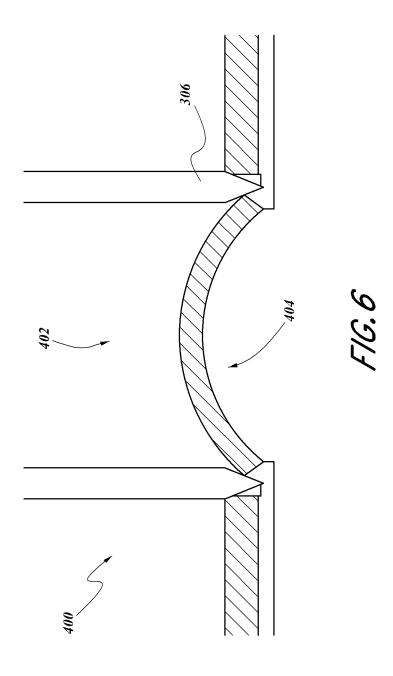


FIG.2D


FIG.2E

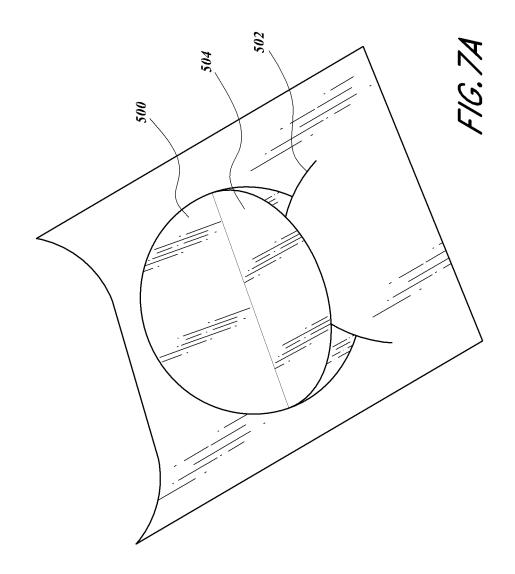


FIG.3

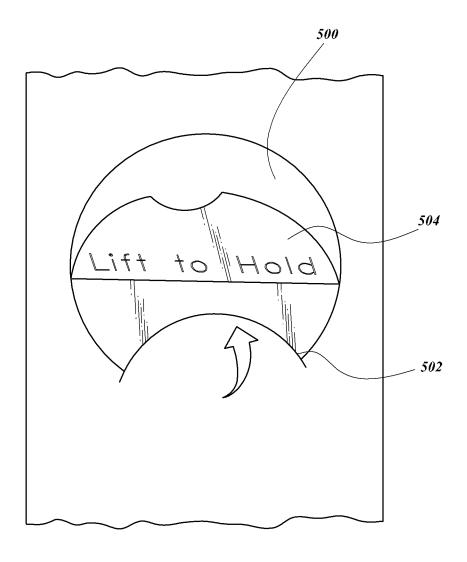
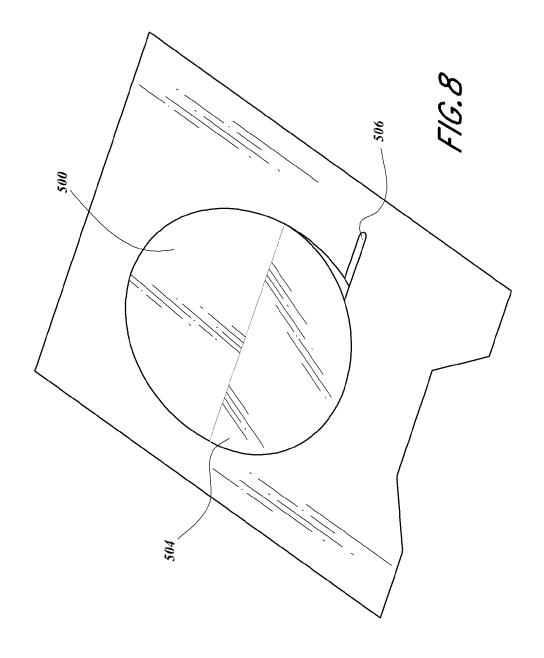
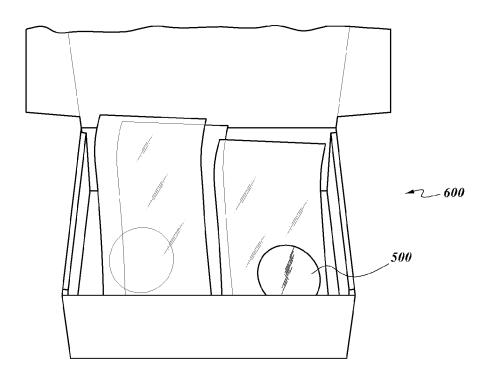




FIG.7B

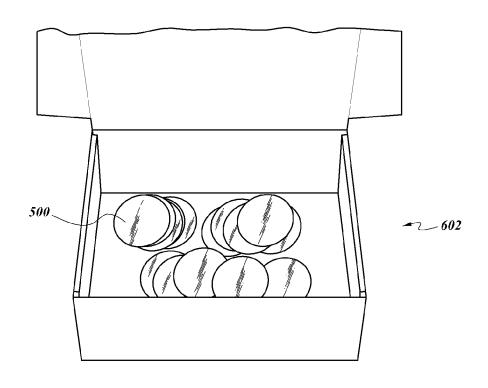
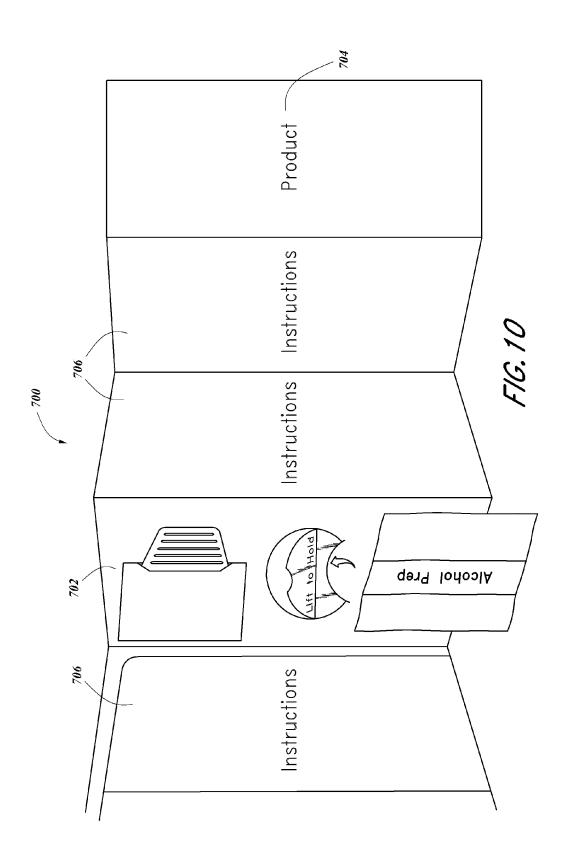



FIG.9

1 SKIN ABRADER

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 14/247,014, filed Apr. 7, 2014, entitled SKIN ABRADER, which claims the benefit of U.S. Provisional Application No. 61/809,817, filed Apr. 8, 2013, entitled SKIN ABRADER. The contents of the aforementioned applications are hereby incorporated by reference in their entirety as if fully set forth herein. The benefit of priority to the foregoing application is claimed under the appropriate legal basis, including, without limitation, under 35 U.S.C. §119(e).

BACKGROUND OF THE INVENTION

1. Field of the Invention

This application describes embodiments of apparatuses, 20 methods, and systems for the abrasion of skin in preparation for application of an electrode for detection of cardiac and other low level electrical signals generated within the human body, allowing for improved short term and long-term adhesion and improved conductance through skin, resulting 25 in better signal quality of recorded data.

2. Description of the Related Art

Skin contact electrodes are used extensively for detecting and transforming potentials generated within the body into electrical signals which may be monitored for a variety of 30 functions, such as the preparation of electrocardiograms and electroencephalograms. Many disposable electrode assemblies and similar devices utilize an electrode together with an adhesive for holding the electrode in position on the skin. For the best electrical contact with mammalian skin, it is 35 desirable to remove hair and a portion of the epidermis, as well as surface oils. Typically, the process involves removal of hair by shaving or other depilatory method. Next, the skin is abraded for the removal of the dry layers of stratum corneum, followed by cleaning and defatting of the skin 40 using an alcohol wipe. The skin abrasion process exposes more conductive layers of skin to improve electric connection, promoting better transmission of a cleaner signal.

As mentioned previously, electrodes may contain an adhesive to keep the electrode in contact with the skin. The 45 outer layers of the stratum corneum are typically the driest and nearest to being sloughed off by the body. Removing these cells prior to electrode placement allows the adhesive to come into newer, more anchored layers of the skin, promoting longer adhesion performance. With sensing 50 applications that require longer-term wear periods, sufficient removal of skin takes on greater importance. The development of a long-term recording ECG patch has further created a need for a tool that is effective in thoroughly removing the stratum corneum layers, to allow for patch adhesion for 55 periods up to and beyond 14 days.

As critical as the skin abrasion process is for good signal conduction and long term adhesion, it is a process that is often incomplete in practice. This is largely due to the limitations of existing abrasion tools in combination with the 60 limited time and attention typically given to the abrasion process. Certain abrasion tools, resembling woven polymer sponges, have a coarse texture. Though the sensation of abrasion is heightened for the patient, the contours of the tool's surface are more conducive to creating scratches in 65 the skin than evenly removing the outer stratum corneum layer. Other products, such as pumice-impregnated alcohol

2

wipes, do an adequate job of abrading the skin without causing unwanted injury to the skin, however significant pressure and attention is required for an effective outcome. In combining the skin abrasion and cleaning step into a single tool, these instruments are easily confused for alcohol wipes intended for just cleaning, and the pressure required for abrasion is not achieved.

Because of the limitations of existing skin abrasion tools, there is need for a simple, one-piece, disposable and low-cost tool that can effectively abrade the skin while being easy to manipulate and that minimizes the amount of attention that must be given to this part of the prep process.

SUMMARY OF THE INVENTION

Embodiments of the present invention relate to skin abrasion devices. In one embodiment, a skin abrasion device comprises: a flat abrasive surface with a rounded shape and a holding layer to facilitate handling the device while applying even pressure to the skin. The device can be used in advance of skin-surface application of electrodes or devices that contain electrodes for sensing biopotentials such as an ECG. In some embodiments, the skin abrasion tool enables even and thorough removal of the top layer of stratum corneum without causing injury to the skin in the form of scratches or gouges, regardless of the experience level of the user

In one embodiment, a dermal preparation device for preparation of the stratum corneum of a patient for long term adhesion of an electrode to the patient, comprises:

- a support layer having an upper surface, a lower surface, a major axis extending through a geometrical center of the support layer and along the longest dimension of the support layer;
- an abrasive adhered to the lower surface;
- a handle secured to the upper layer; and
- wherein the handle is formed by bonding a first portion of a handle layer to the support layer, and folding a second portion of the handle layer to form the handle.

In some embodiments, the support layer of the dermal preparation device is approximately circular, and the major axis is a diameter of the circle. In certain embodiments, the major axis is no more than about 2.5 inches long. In further embodiments, the is no more than about 2.0 inches long. Certain embodiments may cal for the dermal preparation device to further comprise an atraumatic edge. In some embodiments, the atraumatic peripheral edge comprises a rounded surface formed by inclining a peripheral edge of the device away from a plane defined by the lower surface, in the direction of the upper surface. In further embodiments, the support layer is sufficiently flexible that when pressed against a dermal surface using the handle, the lower surface will deform into a convex surface against the dermal surface. In some embodiments, the handle is bonded to the support layer along a bond which extends at least about 50% of the maximum dimension of the support, along the axis of the bond. In certain embodiments, the handle is bonded to the support layer along a bond which extends at least about 85% of the maximum dimension of the support, along the axis of the bond. In further embodiments, the handle is bonded directly to the support layer. In certain embodiments, the handle is bonded to the support layer by a bond which covers at least about 15% of the total area of the upper surface of the support layer. In certain embodiments, the handle is bonded to the support layer by a bond which covers at least about 35% of the total area of the upper surface of the

support layer. In some embodiments, the abrasive comprises a grit ranging from about 36-66 µm.

In further embodiments, in a dermal preparation device as described above where the handle is bonded to the support layer along a bond which extends at least about 50% of the maximum dimension of the support along the axis of the bond, the axis of the bond is substantially parallel to the major axis. In some embodiments, a transdermal electrode and surface preparation kit, comprises at least one transdermal electrode configured for adhesive attachment to a patient's skin, and at least one dermal preparation device as described above.

In some embodiments, a dermal preparation device for preparation of the stratum corneum of a patient for long term adhesion of an electrode to the patient, comprises:

an abrasive surface;

an inner layer; and,

a holding layer further comprising a gripping portion.

In certain embodiments, a method of abrading the skin of patient via a dermal preparation device in preparation for the long term adhesion of an electrode, comprises:

placing the dermal preparation device on the skin; grasping a gripping portion of the dermal abrasion device; applying pressure to the skin through the dermal abrasion device; and

moving the device in a manner to remove a desirable amount of skin.

In some embodiments, the method may comprise preparing the skin for application of the dermal preparation device. Certain embodiments may call for the method to further comprise adhering a physiological monitoring device that comprises an electrode. In embodiments of the method, a physiological parameter may be measured with the physiological monitoring device. In embodiments, the desirable amount of skin comprises an amount of skin configured to improve the signal quality of the physiological monitoring device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-B illustrate different views of embodiments of a skin abrasion device.

FIGS. 2A-E illustrate different views and photographs of embodiments of a skin abrasion device.

FIG. 3 illustrates an embodiment of a sheet for use in 45 manufacturing a skin abrasion device.

FIG. 4 illustrates an additional embodiment of a skin abrasion device.

FIG. 5 illustrates a method for the manufacture of skin abrasion devices.

FIG. 6 illustrates an additional method for the manufacture of a skin abrasion device.

FIGS. 7A-B illustrate embodiments of packaging for a skin abrasion device.

FIG. 8 illustrates an additional embodiment of packaging 55 for a skin abrasion device.

FIG. 9 illustrates an embodiment of a kit containing skin abrasion devices.

FIG. 10 illustrates an embodiment of a kit containing materials related to prepping the surface of the skin for 60 electrode placement.

DETAILED DESCRIPTION

Embodiments disclosed herein relate to apparatuses and 65 methods directed towards the use and manufacture of skin abrasion devices.

4

FIG. 1A illustrates an embodiment of a skin abrasion device 100 comprising an abrasive layer 102 with an abrasive surface 103, an adhesive layer 104, an inner sheet 106, a partial adhesive layer 108, and a holding layer 110 further comprising a gripping portion 112. The skin abrasion device 100 may be flexible and can be further configured to remove at least a portion of the stratum corneum. An advantage of ensuring properties of flexibility and resilience in the abrasion device is the ability to conform against the curvature and contours of the body where electrodes would be placed, while maintaining a relatively even plane such that the pressure applied to the skin during abrasion can be substantially uniformly distributed across the surface as best as practicable.

It will be understood by one skilled in the art that the geometric shapes of the peripheral edge of the skin abrasion device described herein are non-limiting. The embodiments of the skin abrasion device described herein are applicable to a wide variety of geometric shapes.

In some embodiments, the abrasive layer 102 can comprise a material sheet such as medical grade or equivalent sandpaper, where a range of grit sizes can be used depending upon the level of abrasion or gentleness desired as well as the type of skin that is being abraded. In some embodiments, the average diameter of the grit may range in size from about 16-93 microns (μm). For example, the grit can have an average diameter ranging from: about 20-90 μm, about 25-85 μm, about 30-80 μm, about 35-75 μm, about 40-70 μm, about 45-65 μm, or about 50-60 μm. Preferably, Grit diameters in the range of 36-66 μm can provide a level of abrasion that is effective with minimal pressure and a perception of minimal roughness by the subject being abraded.

In some embodiments, the abrasive surface 103 may be a surface that is embedded with or bonded to abrasive material, such as polymeric or mineral particles, or one that is textured through material properties or a manufacturing process.

Preferably, the abrasive surface 103 is biocompatible. In one embodiment, the abrasive surface 103 may comprise a biocompatible mineral such as silicon carbide. Another embodiment may be a biologically inert polymer that is formed or molded to have an abrasive texture, such as hook and loop fasteners. Further embodiments include the use of aluminum oxide, alumina-zirconia, chromium oxide, ceramic aluminum oxide or any other appropriately abrasive material

In some embodiments, the abrasive surface 103 may comprise commercially available abrasive surfaces such as 426U Abrasive, available from 3M Innovative Properties Company. Further abrasive surfaces may also include those described in U.S. Pat. No. 6,136,008, SKIN ABRASION DEVICE FOR BIOMEDICAL ELECTRODE, filed Mar. 19, 1998 and hereby incorporated by reference. For example, as described in U.S. Pat. No. 6,136,008, an abrasive surface can comprise: a polymeric geometrically structured surface abrasive which minimizes and preferably avoids any use of mineral particle content, making the assembly of a skin abrasion device in a high-speed, low-cost biomedical electrode manufacturing facility possible under GMP/QSR conditions; and a predetermined pattern of geometrically structured surface abrasive, which permits assured, engineered surfaces for consistent abrading properties on a specific type of mammalian skin or a specific mammal, in order to achieve reduced skin impedance without undue damage or pain to the patient. Using these

parameters, it is possible to engineer a geometrically structured surface abrasive based upon the tooling used to produce such surface.

As further described in U.S. Pat. No. 6,136,008, a portion of an abrasive surface can be engineered from a variety of 5 polymeric materials. Non-limiting examples of such polymers include (meth)acrylates such as triacrylates prepared from one or more monomers such as trimethyolpropane triacrylate and triacrylate of trishydroxyethyl isocyanate. Additives can be added to such an abrasive surface and can 10 include pigments, dyes, plasticizers, anti-oxidants, and fillers as desired by those skilled in the art.

The embodiments described herein may further include the use of open-coat abrasives or perforations, in order to minimize the collection of abraded skin that may reduce the 15 effectiveness of the abrasive during the time of use.

In certain preferable embodiments, the material properties of the selected abrasive material sheet used in the abrasive layer 102 contribute to the flexibility and structural resilabrasive surface 102 can be laminated to the inner sheet 106 via an adhesive layer 104. Adhesive layer 104 can comprise any suitable adhesive material, for example a double-sided rubber adhesive such as 300LSE manufactured by 3M Innovative Properties Company. In some embodiments, 25 adhesive layer 104 is a glue or other adhesive material sheet or substance.

In certain embodiments, the inner sheet 106 can be a flexible sheet or film, preferably constructed from a polymer such as polythethylene terephthalate. In other embodiments, 30 the inner sheet 106 can comprise any suitable polymer, for example polyethylenes, polypropylenes, polyesters, vinyl esters, other flexible polymer films. The thickness of the inner sheet 106 can range from about 0.002 inches to 0.015 inches. For example, the thickness of the inner sheet 106 can 35 range from: about 0.003-0.014 inches, about 0.004-0.013 inches, about 0.005-0.012 inches, about 0.006-0.011 inches, about 0.007-0.010 inches, or about 0.008-0.009 inches. The use of a flexible polymer film advantageously contributes to the flexibility and structural resilience of the skin abrasion 40 device.

In certain embodiments, the thickness of the inner sheet 106 is desirably selected to complement the material properties of the abrasive layer. For example, if the abrasive layer is particularly thick, then a thinner inner sheet layer may be 45 more desirable.

Another advantage of laminating the inner sheet 106 to the abrasive surface 102 is the minimization of creases that can form on the abrasive surface, as certain abrasive materials can be prone to crease-forming due to bending. Such 50 creasing can produce sharp corners which may scratch or break the skin, increasing the likelihood of skin irritation or sensitization to electrode materials.

In some embodiments, the inner sheet 106 is attached to an adhesive layer 108 that covers less than 100% of an upper 55 of a separate layer, but rather, the bottom layer of the surface of the inner sheet 106. The partial adhesive layer 108 can be comprised of any suitable adhesive material, for example a double-sided rubber adhesive such as 300LSE manufactured by 3M Innovative Properties Company. In other embodiments, the adhesive layer 108 is a type of glue 60 or other adhesive substance. In some embodiments, the adhesive layer 108 can cover a portion of the inner sheet 106 ranging from approximately 5% to 100% of inner sheet 106. For example, the portion of inner sheet 106 covered by adhesive layer 108 can be at least about 10%, at least about 65 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about

6

45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 90%, or about 100% of the total top area of the inner sheet 106. In certain embodiments, the adhesive layer 108 covers no more than about 60% or no more than about 50% of the area of the inner shet 106. In alternative embodiments, the inner sheet 106 can comprise multiple thinner sheets laminated together.

In some embodiments, the holding layer 110 can be attached to the inner sheet 106 via an adhesive layer 108. The adhesive layer 108 can be attached to only a portion of the holding layer 110. As will be described in greater detail below, the portion of the holding layer 110 that is not attached to the adhesive layer 108 functions as the gripping portion 112, which can be a tab, handle, or other protrusion. The gripping portion 112 can be grasped between the fingers of a user to control the movement and applied pressure of the skin abrasion device.

In some embodiments, the portion of the holding layer ience of the abrasive device. In some embodiments, the 20 110 attached to the adhesive layer 108 can be at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 90%, or about 100% of the total area of the holding layer 110. In certain embodiments, the portion of the holding layer 110 that is attached to the inner sheet 106 by adhesive layer 108 is no more than about 70%, about 60%, or about 50% of the area of the holding layer 110.

> In certain embodiments, the holding layer 110 can be a flexible sheet or film, preferably constructed from a polymer such as polythethylene terephthalate. In other embodiments, the holding layer 110 can comprise any suitable polymer, for example polyethylenes, polypropylenes, polyesters, vinyl esters, or other flexible polymer films. The thickness of the holding layer can range from about 0.001-0.010 inches. For example, the thickness of the holding layer 110 can range from: about 0.002-0.009 inches, about 0.003-0.008 inches, about 0.004-0.007 inches, or about 0.005-0.006 inches.

> In some embodiments, the holding layer 110 can be printed to include text instructions, diagrams, images, or other labeling that facilitates use of the device for certain applications, or that aid in correct selection of the device as applicable to cases in which multiple abrasion devices are provided to the user. For example, a visual indicium such as a number symbol or color code may be provided on the holding layer, or visible through the holding layer, indicative of a particular coarseness of the abrasive layer 102. In certain embodiments, a plurality of abrasion devices may be provided, each having two unique abrasive characteristics and unique corresponding indicium.

> In some embodiments, the abrasive layer is not comprised abrasive device is comprised of grit as described above, directly adhered to the inner sheet 106 via an adhesive.

> FIG. 1B illustrates an embodiment of a skin abrasion device with a circular peripheral shape 120. In some embodiments, the abrasive device 120 may be rounded, circular, oval, or otherwise curved. With a rounded shape, the abrasive device remains free of the types of angled or straight edges that can scratch, cut, or break the skin of the subject during the abrasion process when the device is moved back and forth with application of pressure. The abrasive device 120 may be made into further shapes without sharp or jagged edges unconfined to the aforemen-

tioned shapes. Similar to FIG. 1A, In some embodiments, the portion of the holding layer 110 attached to the adhesive layer 108 can be at least about 1%, at least about 5%, at least about 10%, at least about 25%, at least about 25%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 55%, at least about 55%, at least about 65%, at least about 70%, at least about 70%, at least about 90%, or about 100% of the total area of the holding layer 110. In certain embodiments, the portion of the holding layer 110 that is attached to the inner sheet 106 by adhesive layer 108 is no more than about 70%, about 60%, or about 50% of the area of the holding layer 110.

In some embodiments, the abrasive device comprises a major axis 114 comprising the longest dimension that 15 extends across the geometric center of the device in a plane parallel to the plane of the abrasive device. The length of the major axis 114 can range from about 0.5-3.0 inches. For example, the length of the major axis can range from: about 0.75-2.75 inches, about 1.0-2.5 inches, about 1.25-2.25 20 inches, or about 1.5-2.0 inches. In a preferred embodiment, the length of the major axis is 1.625 inches.

FIGS. 2A-F illustrate different views of an embodiment of an abrasive device, similar to the device described in FIG. 1B, wherein a holding feature such as the gripping portion 25 112 of the holding layer 110 can be pinched between the fingers 122 and used to abrade the skin 124. The gripping portion, which may be embodied as a tab, handle, or other protrusion, serves to facilitate secure holding of the abrasion device while minimizing contact between the abrasion 30 device's user and the skin of the subject being abraded. The gripping portion also enables the clinician or wielder of the abrasion device to apply even pressure to the center of the abrasion device rather than uneven pressure to one edge, as may be the case if a flat piece of abrasive material were held 35 without a holding feature. In a preferred embodiment, the gripping portion 112 of holding layer 110 extends across at least approximately half of the abrasive device as defined by the major axis 114. In some embodiments, the gripping portion 112 has the approximate shape of a half-circle. 40 Preferably, the flat edge of the half-circle gripping portion 112 can extend across the entirety of major axis 114. However, in some embodiments, the flat edge of the gripping portion 112 extends along only a portion of the major axis 114. For example, the flat edge can extend across: at 45 least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or about 100%. Further, it will be understood that the gripping portion 112 is not limited to a flat edge aligning with the 50 major axis 114. In some embodiments, the flat edge of the gripping portion may be located parallel to the major axis between the major axis and the edge of the abrasive device. In other embodiments, the flat edge of the gripping portion may be perpendicular to the major axis 114. As will be 55 understood by those skilled in the art, in still other embodiments, the shape of the gripping portion may be rectangular, circular, or further shapes other than a half-circle.

FIG. 3 illustrates a sheet 130 for use in one method of manufacturing the abrasion device as described above, comprising disc cut-outs 136, partial adhesion layer 134, and unadhered sections of holding layer 132. In some embodiments, a method of producing the skin abrasion device comprises: laminating the aforementioned abrasive surface with a backing material, or multiple materials, for structural 65 support and flexibility; attaching material that is used as a holding feature; and, cutting the material to a desired shape.

8

Within the aspect of manufacturing, the use of an abrasive film or sheet 130 facilitates the use of scalable and inexpensive converting methods for laminating to other necessary materials. In one embodiment of this process, as illustrated in FIG. 3, two abrasive discs 136 can be made as mirror images within the same 2-up die strike. This approach could be repeated in a pattern in both x and y dimensions, utilizing either a flat steel-rule die or a rotary die for large-scale production.

In some embodiments, the abrasion device comprises a topmost support layer and a handle. In certain embodiments, the handle can be attached to the support layer via two or more attachment points. Preferably, the two or more attachment points can be spaced apart for further stability. In some embodiments, the attachment points for the handle can be located in any location across the top surface of the abrasion device.

FIG. 4 illustrates an embodiment of an abrasive device similar to the embodiments described in FIGS. 1-2 that is formed to have a slight upwardly concave shape, particularly at the edges, forming an atraumatic periphery 214. The abrasion device can have a rounded profile in plan view. In further embodiments, the abrasion device may have a rectangular, oval, or other shape in plan view. As with FIGS. 1-2, the abrasive device can comprise an abrasive layer 202, an adhesive layer 204, an inner sheet 206, a partial adhesive layer 208, and a holding layer 210 comprising a gripping portion 212. The atraumatic periphery 214 concaves upwardly and presents a convex curve along the peripheral lower edge which would reduce the risk of contact between skin and the potentially sharp edges of the abrasive device, further eliminating potential for inadvertent scratching or gouges in the skin. In some embodiments, the annular atraumatic surface can be formed by molding or thermoforming operations or by cold stamping the device or support layer from a sheet stack. An atraumatic periphery can alternatively be formed by tapering the thickness of the abrasion device towards the edges or by using lower stiffness materials to construct an annular peripheral zone on the

As similarly described above in relation to FIG. 1, the thickness of inner layer 206 can be varied, generally between about 0.001-0.015. A thicker inner layer 206 beyond about 0.01 may lead to decreased flexibility in the abrasive device; however, depending upon the construction material, a thicker inner layer can allow for greater ease in curving the edges of the device.

FIG. 5 illustrates an embodiment of a method 300 for creating the concave shape of the abrasive device of FIG. 4 through a cutting method using cutters 306 applied against a softer surface 304, causing the abrasive device 302 to take a curved edge 308. FIG. 6 illustrates an embodiment where preparation of the concave shape can be achieved through more deliberate forming methods 400 after the material is cut. In some embodiments, the material could be cut against an explicitly concave surface 404, imparting that shape when the cut force is applied.

The shape and form of the abrasion device is conducive to flat and user-friendly packaging. FIG. 7A illustrates an embodiment of a mechanism for packaging the abrasion device 500 via a half-moon slit 502, where the tab or handle 504 of the abrasion device is presented on top of the slit 502. FIG. 7B illustrates an embodiment of a mechanism for packaging the abrasion device 500 where the tab or handle 504 may extend in a direction away from the half-moon slit 502. In some embodiments, the tab or handle 504 may extend in an opposite direction, directly away from the

half-moon slit 502. In certain embodiments, the tab or handle can extend in a direction perpendicular to the halfmoon slit 502. It will be understood by one of skill in the art that the slit may be of any shape suitable for holding the abrasion device, for example an angular slit. The abrasion 5 device may also be held by more than one slit, such as two slits, three slits, or more than three slits. The half-moon slit may be a slit extending through an arc of at least about 120° and preferably at least about 160°, or 180°, and may have a substantially constant radius or a curve conforming to a 10 portion of an oval or ellipse.

FIG. 8 illustrates another packaging embodiment where the abrasion device is placed in a rectangular slot 506, which can secure the abrasion device through friction against the packaging surface, and presents a handle above or below the 15 slot. Both of these embodiments described in FIGS. 7 and 8 allow the user to grip the abrasion device from the included tab or handle 504 and remove the device from the packaging without changing grip.

As described above, the abrasion device allows for ver- 20 satility in its packaging. In one packaging embodiment, the abrasion device may be individually packaged and provided in multiple unit packaging 600. Alternately, many abrasion devices may be provided loose, in a box of multiple quantities 602. FIG. 9 illustrates a kit embodiment, in which a 25 single, or multiple abrasion devices are provided for use with a single electrode or other physiological monitoring product.

In a kitted embodiment 700, the abrasion device's flat form factor allows for packaging within instructions along 30 with other skin preparation materials, such as razors and alcohol wipes. FIG. 10 illustrates one embodiment of such a kit, a Zio Patch kitted assembly 704, which contains the monitor, shaving tool, abrading tool, and cleaning wipe(s) 702 packaged together within the application instructions 35 booklet. Instructions 706 In another embodiment of the abrasion device included within a kit, multiple abrasion devices of varying coarseness could be provided for sequential steps of abrasion, such as a coarse abrasion device for the In another embodiment of the abrasion device included within a kit in which multiple abrasion devices of varying coarseness could be provided for sequential steps of abrasion, the different abrasion devices could vary in size and shape so as to be distinguishable within the kit.

In certain embodiments, the handle contains cut-outs (semi-circular, triangular, rectangular, or any suitable shape) along its edge, giving the user a feature that helps peel the handle up from the main body of the device if it has not been folded up.

In some embodiments, the kit 700 may further include instructions for the use of the abrasion device in combination with a monitoring device. For example, the kit may include instructions 706 such as how to enroll in an online website related to the abrasion device. Further instructions 55 may include advising a user as to properly planning for the placement of the physiological monitoring device, including shaving, abrading the skin, cleaning the skin, removal of the device, and proper application of the physiological monitoring device.

What is claimed is:

1. A method of abrading the skin of a mammal via a dermal preparation device in preparation for adhesion of an electrode, comprising:

placing a dermal preparation device on the skin, the 65 dermal preparation device comprising a support layer having an upper surface, a lower surface coated with an

10

abrasive, and a major axis extending through a geometrical center of the support layer and along the longest dimension of the support layer;

wherein the dermal preparation device comprises a gripping layer secured to the upper surface of the support layer, the gripping layer comprising an adhered portion adhered to the support layer, a gripping portion, and a fold between the adhered portion and the gripping

grasping the gripping portion of the dermal preparation device;

applying pressure to the skin through the dermal preparation device;

moving the dermal preparation device in a manner to remove a desirable amount of skin; and

placing a physiological measurement device on the skin, the physiological measurement device configured for adhesive attachment to a mammal.

- 2. The method of claim 1, wherein the physiological measurement device is an electrode.
- 3. The method of claim 2, wherein the electrode is configured to measure a physiological parameter.
- 4. The method of claim 3, wherein the physiological parameter is cardiac rhythm data.
- 5. The method of claim 1, further comprising preparing the skin for application of the dermal preparation device.
- 6. The method of claim 1, wherein the abrasive comprises a polymeric grit with diameters ranging from about 36-66 the abrasive configured to mechanically remove a portion of the stratum corneum of the mammal.
- 7. The method of claim 6, wherein the abrasive uniformly coats the entirety of the lower surface.
- 8. The method of claim 1, wherein the dermal preparation device further comprises an outer peripheral edge, the outer peripheral edge curving along the entirety of a circle and having no corners.
- 9. The method of claim 1, further comprising measuring first pass, and a finer grit abrasion device for the final pass. 40 a physiological parameter with the physiological monitoring device.
 - 10. The method of claim 1, wherein a desirable amount of skin comprises an amount of skin configured to improve the signal quality of the physiological monitoring device.
 - 11. The method of claim 1, wherein the support layer is approximately circular and the major axis is a diameter of the circle.
 - 12. The method of claim 11, wherein the major axis is no more than about 2.5 inches long.
 - 13. The method of claim 11, wherein the major axis is no more than about 2.0 inches long.
 - 14. The method of claim 1, wherein the support layer is sufficiently flexible that when pressed against a dermal surface using the gripping portion, the lower surface will deform into a convex surface against the dermal surface.
 - 15. The method of claim 1, wherein the gripping portion
 - 16. The method of claim 15, wherein the handle is bonded to the support layer along a bond which extends at least 60 about 50% of a maximum dimension of the support layer, along an axis of the bond.
 - 17. The method of claim 16, wherein the axis of the bond is substantially parallel to the major axis.
 - 18. The method of claim 15, wherein the handle is bonded to the support layer along a bond which extends at least about 85% of a maximum dimension of the support layer, along an axis of the bond.

- 19. The method of claim 15, wherein the handle gripping layer is bonded to the support layer by a bond which covers at least about 15% of a total area of the upper surface of the support layer.
- **20**. The method of claim **15**, wherein the handle gripping 5 layer is bonded to the support layer by a bond which covers at least about 35% of a total area of the upper surface of the support layer.
- 21. The method of claim 1, wherein the dermal preparation device is separate from the physiological measurement 10 device.
- 22. The method of claim 1, wherein the gripping portion extends above the upper surface of the support layer.

* * * * *